

Rec. Nat. Prod. 6:4 (2012) 376-380

records of natural products

Chemical Constituents from *Erigeron bonariensis* L. and their Chemotaxonomic Importance

Aqib Zahoor^{1,4}, Hidayat Hussain^{*1,2}, Afsar Khan³, Ishtiaq Ahmed¹, Viqar Uddin Ahmad⁴ and Karsten Krohn¹

 ¹Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
²Department of Biological Sciences and Chemistry, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
³Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad-22060, Pakistan.
⁴H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. (Received September 11, 2011; Revised May 9, 2012 Accepted June 15, 2012)

Abstract: The study of the chemical constituents of the whole plant of *Erigeron bonariensis* (L.) has resulted in the isolation and characterization of a new and nine known compounds. The known compounds were identified as stigmasterol (1), freideline (2), 1,3-dihydroxy-3R,5R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester (3), 1R,3R-dihydroxy-4S,5R-dicaffeoyloxycyclohexane carboxylic acid methyl ester (4), quercitrin (5), caffeic acid (6), 3-(3,4-dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonylethyl ester (8), benzyl O- β -D-glucopyranoside (9), and 2-phenylethyl- β -D-glucopyranoside (10). The aromatic glycoside, erigoside G (7) is reported as new natural compound. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data. The chemotaxonomic studies of isolated compounds have been discussed. **Keywords:** *Erigeron bonariensis*; natural products; chemotaxonomic studies.

1.Plant Source

Erigeron bonariensis (L.) is locally called "gulava" or "mrich booti" and is traditionally used in urine problems. It is a common weed distributed from plains to ca. 1800 m height in North-West Frontier Province, Punjab and Balochistan in Pakistan [1]. The whole plants of *Erigeron bonariensis* (L.) (Asteraceae) were collected from Oghi, Mansehra, Pakistan, in November 2002, and authenticated by Mr. Jan Alam (Taxanomist) at the Botany Department, University of Karachi, Pakistan. A voucher specimen (KUH G. H. No. 68220) has been deposited at the herbarium of the above Department.

2. Previous Studies

Quercetin and quercitrin were identified from the ether and ethyl acetate soluble fraction of E. bonariensis [2].

3. Present Study

The air-dried whole plant (24 kg) were extracted with MeOH and then dried in vacuo. The crude extract was suspended in water, and successively extracted with *n*-hexane, CHCl₃, EtOAc, and *n*-BuOH in turn. The CHCl₃ extract (108 g) was subjected to silica gel column eluting with n-hexane/CHCl₃ yielded stigmasterol (**1**, 16.0 mg) [3], freideline (**2**, 45.0 mg) [4], 1,3-dihydroxy-3*R*,5*R*-dicaffeoyloxy cyclohexane carboxylic acid methyl ester (**3**, 8.0 mg) [4], 1*R*,3*R*-dihydroxy-4*S*,5*R*-dicaffeoyloxycyclohexane carboxylic acid methyl ester (**4**, 3.0 mg) [4], quercitrin (**5**, 10.0 mg) [5], caffeic acid (**6**, 15.0 mg) [6], erigoside G (**7**, 3.0 mg) [7], and 3-(3,4-Dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonylethyl ester (**8**, 7.0 mg) [8], benzyl O-β-D-glucopyranoside (**9**, 8.0 mg) [9] and 2-phenylethyl-β-D-glucopyranoside (**10**, 16.0 mg) [10]. The isolated compounds were identified by comparison

^{*}Corresponding author: E- Mail:Hidayat110@gmail.com (H. Hussain), Phone +49-5251-602182.

of their physical and spectroscopic data (¹H and ¹³C NMR) with those reported in the literature (Figure 1). The new compound erigoside G (7) was obtained as brown gum. The UV spectrum exhibited absorption maxima at 263 nm. Analysis of the HREIMS gave a molecular ion at m/z 302.1112 [M]⁺, corresponding to the molecular formula $C_{13}H_{18}O_8$, supported by the ¹H NMR, ¹³C NMR and DEPT analysis. From the ¹H–¹H-COSY, two protons appeared at δ 6.91 (1H, dd, J = 7.5, 2.0 Hz, H-4) and δ 6.81 (1H, d, J = 7.5 Hz, H-5) were coupling to one another while one proton appeared at δ 7.20 (1H, d, J = 2.0 Hz, H-2), suggesting the presence of ABX spin system of three aromatic protons. Proton appeared at δ 7.20 (1H, d, J = 2.0 Hz, H-2) showed HMBC interaction with carbons appeared at δ 131.2, 65.3 and 123.8, while proton at δ 6.91 (1H, dd J = 7.5, 2.0 Hz, H-4) showed HMBC interaction with carbons appeared at δ 149.9 and 131.2, suggesting the structure consist on 3,4-dihydroxybenzyl alcohol system. A signal at δ 4.77 (1H, d, J = 7.5 Hz, H-1') was assigned to the anomeric proton of glucopyranoside moiety. The anomeric configuration was assigned to be β on the basis of large coupling constant. In ¹³C-NMR spectrum, the signals for β -D-glucopyranoside moiety were observed at δ 104.5, 75.0, 77.7, 71.4, 78.4, and 62.6. The HMBC interaction of anomeric proton δ 4.77 (1H, d, J = 7.5 Hz, H-1') with C-1 confirmed the structure of compound 7 as 3.4dihydroxybenzyl alcohol-3-O- β -D-glucopyranoside (erigoside G) (Figure 1). The aromatic glycoside (7) is new as a natural product but has been reported as a bio transformed product of 3,4-dihdroxybenzaldehyde by hairy root culture of Pharbitis nil [7].

Erigoside G (7): Brown gum. UV (CH₂Cl₂) λ_{max} , nm (log ε): 263 (2.10). IR (KBr) ν_{max} : 3200, 2963, 1606, 1465, 1061 cm⁻¹. ¹H NMR (600 MHz, CD₃OD): δ 3.40 (1H, t, *J* = 9.5 Hz, H-4'), 3.41 (1H, m, H-5'), 3.46 (1H, t, *J* = 9.0 Hz, H-3'), 3.49 (1H, t, *J* = 9.0 Hz, H-2'), 3.72 (1H, dd, *J* = 12.5, 5.0 Hz, H-6'), 3.90 (1H, dd, *J* = 12.5, 2.0 Hz, H-6'), 4.48 (2H, s, H-7), 4.77 (1H, d, *J* = 7.5 Hz, H-1'), 6.81 (1H, d, *J* = 7.5 Hz, H-5), 6.91 (1H, dd, *J* = 7.5, 2.0 Hz, H-4), 7.20 (1H, d, *J* = 2.0 Hz, H-2). ¹³C NMR (CD₃OD) δ : 62.6 (C-6'), 65.1 (C-7), 71.4 (C-4'), 75.0 (C-2'), 77.7 (C-3'), 78.4 (C-5'), 104.5 (C-1'), 117.0 (C-2), 118.2 (C-5), 123.8 (C-4), 134.7 (C-3), 146.8 (C-6), 147.9 (C-1). HREIMS: *m*/z 302.1112 [M]⁺ (Calcd. 302.1002 for C₁₃H₁₈O₈).

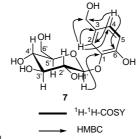


Figure 1. Selected ¹H-¹H COSY and HMBC correlations of compound 7.

4. Chemotaxonomic significance

Erigeron is a genus of about 390 species of flowering plants in the family Asteraceae. It represents one of the foremost examples of intercontinental plant invasions that have resulted in a number of taxonomic problems, especially in distinguishing it from *Conyza* [11]. We have previously investigated the title species and considered to be a synonym of *Conyza bonariensis* (L.) [12]. But actually *Erigeron* and *Conyza* are two different genera [11]. From previous [12] as well as present investigation, on the basis of chemotaxonomy we have concluded that the title species is *Erigeron bonariensis*. Because we consider that the phenolic constituents and caffeoyl derivatives may indicate it has a closer relationship to the genus *Erigeron* than the other species of *Conyza*. The flavonoids, caffeoyl derivatives and triterpenes identified here are in agreement with the chemical profile of the genus *Erigeron* (Table 1). Compounds **1-6** identified have already been isolated from *Erigeron* species as shown in previous studies, specially frideline (**2**) and their derivatives which seem to be characteristic secondary metabolites of the genus *Erigeron* (see Table 1).

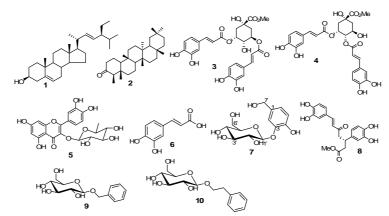


Figure 2. Structure of compounds 1-10 isolated from Erigeron bonariensis L.

Caffeoylquinic acids are widespread among Asteraceae, and there methyl esters 3 and 4 have already been isolated from the E. breviscapus [13]. This is the first report of compounds 8-10 in plants of the genus Erigeron. This might well be explained since most of the previous studies focused on medium polarity extracts of *Erigeron*. Isolation of compound 10 was also reported from Mikania hirsutissima and Gymnaster koraiensis of Asteraceae [14,15]. Similarly isolation of compound 9 was reported from *Helichrysum conglobatum* and *Baccharis dracunculifolia* of the same family [16,17] which is particularly interesting since this strengthens the chemotaxonomic relationship of genus *Erigeron* and *Helichrysum* and *Baccharis*. Compound 8 is an uncommon compound and was previously isolated only from Isodon excisus [8] but it is a caffeoylic conjugate proving the agreement of given subject with Asteraceae. Also presences of quercitrin (5) [5], and absence of pyromeconic acid and its derivatives provides the chemotaxonomic difference among E. bonariensis L. and other Erigeron species [2]. E. bonariensis L. represents one of the foremost examples of intercontinental plant invasions that have resulted in a number of taxonomic problems, especially in distinguishing it from Conyza Less. (Asteraceae) [11]. Previous phytochemical studies on Conyza species have led to the isolation of about flavonoids mainly including rutin, quercetin-3-O-glucoside, and quercetin [18]. In contrast, the plants belonging to *Erigeron* are described as containing flavonoids (scutellarin as the major components) (Table 1) [19-21], caffeoyl derivatives (Table 1), which are regarded as the characteristic constituents of the genus. Finally, it should be noted that this chemotaxonomic study (including Table 1) could be helpful for a better understanding in regard to the controversial taxonomy of the genus *Erigeron*, whose taxonomic classification have been altered by the establishment of synonymies and the transference of plants from and to the genus [22].

Table 1. Flavonoids, triter	penes, caffeoylic derivatives,	and steroids isolated from	genus Erigeron

Flavones	
Kaempferol	E. multiradiatus [23]
	E. multiradiatus [24]
5,7,4'-Trihydroxyflavanone	E. breviscapus [25]
Quercetin	E. acer [26], E. bonariensis [5]
7-Hydroxy-4',5-dimethoxyflavone,	E. annuus [27]
Quercitrin	E. bonariensis [5]
3,5,6,4'- Tetrahydroxy-7-methoxyflavone	E. breviscapus [25]
Apigenin	E. breviscapus [25]
3,5,6,7,4'-Pentahydroxyflavone	E. breviscapus [25]
Apigenin-7-O-β-D-glucuronide butyl ester	E. multiradiatus. [24]
Kaempferol-7-O-α-L-rhamnopyranoside	E. multiradiatus [24]
Kaempferol-3-O- β-D-glucopyranoside-7-O- α -L-rhamnopyranoside	E. multiradiatus [24]
Apigenin-7-O-β-D-glucoside	E. multiradiatus [28]
Apigenin-7-glucuronide	E. annuus [27]
4',5-dimethoxyapigenin,	E. annuus [27]
5,4'-Dihydroxyflavone-7-O-β-D-pyranglycuronate butyl ester	E. breviscapus [29]
Scutellarin	E. breviscapus [30]
Apigenin 7-O-β-D-pyranoglucuronide	E. breviscapus [31]
Plantaginin	E. multiradiatus [28]
Scutellarein-7-O-β-D-glucoside	E. multiradiatus [28]
Wogonin	E. multiradiatus [23]
Luteolin	E. multiradiatus [28]
Triterpenes	
β-Amyrin	E. acer [26], E. sumatrensis [32]
α-Amyrin	E. acer [26], E. sumatrensis [32]
3β,23,28-Trihydroxy-12-oleanene acetonide	E. annuus [33]
Taraxerol	E. acer [26], E. sumatrensis [32]
Lupeol	E. acer [26], E. sumatrensis [32]
Friedelin	E. acer [26], E. sumatrensis [32]
Epifriedelinol	E. acer [26], E. sumatrensis [32]
Fernenol	E. acer [26], E. sumatrensis [32]
24-Methylenelanost-8-en-3-β-ol	E. acer [26], E. sumatrensis [32]

Glutinol	E. acer [26], E. sumatrensis[32]
Schottenol	E E. acer [26], E. sumatrensis[32]
Simiarenol	E. acer [26], E. sumatrensis[32]
Steroids	
Ergosterol peroxide	E. annuus L [35], E. multiradiatus
	[24]
Stigmasterol	<i>E. annuus</i> [33], <i>E. acer</i> [26], <i>E.</i>
	sumatrensis [32]
Stigmast-5-ene-3β,7α-ol	E. annuus [33]
Stigmast-4-ene- 3β , 6α -ol	E. annuus [33]
Stigmast-7,24-dien-3β-ol	E. annuus [33]
Stigmasterol glucoside	E. multiradiatus [24]
Stigmast-7-en-3β-ol	E. Canadensis [36]
Stigmasta-7,22-dien-3-one	E. Canadensis [36]
Stigmast-7-en-3-one	E. Canadensis [36]
α-Spinasterol	E. Canadensis [36]
Caffeoyl derivatives	
Caffeic acid	E. breviscapus [37], E. acer [26]
1,5-Dicarffeoylquinic ester	E. breviscapus [13]
3,5-Dicarffeoylquinic ester	E. breviscapus [13]
4,5-Dicarffeoylquinic ester	E. breviscapus [13]
Erigoster A	E. breviscapus [13]
Erigoster B	E. breviscapus [13]
Erigeroside	E. breviscapus [37]
1-O-(4-Pyranon-3-yl)-6-O-caffeoyl-α-D-pyranoglucose	E. breviscapus [38]
1 <i>R</i> ,3 <i>R</i> -Dihydroxy-4 <i>S</i> ,5 <i>R</i> -dicaffeoyloxy cyclohexane carboxylic acid methyl ester	
Erigeside I	E. breviscapus [39]
Erigeside II	E. breviscapus [39]
Methylcaffeate	E. breviscapus [40]
6'-O-Caffeylerigeroside	E. multiradiatus [28]
(1 <i>R</i> ,3 <i>R</i>)-Dihydroxy-(4 <i>S</i> ,5 <i>R</i>)-dicaffeoyloxycyclohexane carboxylic acid methyl ester	E. breviscapus [41]
1,4-Dihydroxy-(3 <i>R</i> ,5 <i>R</i>)-dicaffeoyloxycyclohexane carboxylic acid methyl ester	E. breviscapus [41]
Ethylcaffeate	E. breviscapus [41]
Miscellaneous aromatic compounds	
p-Hydroxybenzoic acid	E. multiradiatus [23], E. breviscapus
	[30], <i>E. multiradiatus</i> [28]
1-Hydroxy-2,3,5-trimethoxyxanthone	E. multiradiatus [23]
3,5-Dimethoxy-3',4':2",3"-dihydro-furanchalcone	E. multiradiatus [23]
3,4-Dihydroxybenzoic acid	E. breviscapus [40]
β-(p-Methoxyphenyl)acrylic acid	E. breviscapus [40]
3,5-Dimethoxy-4-hydroxy benzene carbonic acid	E. breviscapus [42]
6-Methoxy coumarin-7-O-β-D-pyranglycoside	E. breviscapus [42]
Vanillic acid	E. multiradiatus [28]
Scopoletin	E. breviscapus [41]
Isoscopoletin	E. breviscapus [41]
3,5-Dimethoxy benzene carbonic acid-4-O- β-D-pyranglucose	E. breviscapus [29]
Emodin Puremeasuria asid	E. multiradiatus [23]
Pyromeconic acid	E. breviscapus [41]

Acknowledgment. We wish to gratefully acknowledge the financial support of the Higher Education Commission (HEC), Pakistan to various scholars.

References

- [1] Nasir, E, Ali S. I., 1972. Flora of West Pakistan, Fakhri Printing Press, Karachi, pp. 734.
- [2] K. Imai and S. Mayama (1954). Chemical constituents of *Erigeron* species (Compositae). III. *Erigeron bonariensis*, *Yakugaku Zasshi*, **74**, 109-110.
- [3] P. S. Jain, S. B. Bari and S. J. Surana (2009). Isolation of stigmasterol and γ-sitosterol from petroleum ether extract of woody stem of *Abelmoschus manihot, Asian J. Biol. Sci.* **2**, 112-117.
- [4] A. Patra, S. K. Chaudhuri and A. K. Acharyya (1990). Application of 2D NMR in spectral assignments of some friedelanes and secofriedelanes, *Magn. Reson. Chem.* 28, 85-89.
- [5] M. H. Lee, Y. K. Son and Y. N. Han (2002). Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis, *Arch. Pharm. Res.* **25**, 842-850.
- [6] R.W. Teng, D. Z. Wang, Y.S. Wu, Y. Lu, Q.T. Zheng and C.R. Yang (2005). NMR assignments and single crystal X-ray diffraction analysis of deoxyloganic acid, *Magn. Reson. Chem.* 43, 92.
- [7] H. Kanho, S. Yaoya, N. Kawahara, T. Nakane, Y. Takase, K. Masuda and M. Kuroyanagi (2005). Biotransformation of Benzaldehyde-Type and Acetophenone-Type Derivatives by *Pharbitis nil* Hairy Roots, *Chem. Pharm. Bull.* **53**, 361-365.
- [8] C. Lee, J. Kim, H. Lee, S. Lee and Y. Kho (2001). Two new Constituents of *Isodon excisus* and their evaluation in an Apoptosis inhibition assay, *J. Nat. Prod.* **64**, 659-660.
- [9] K. Umehara, I.. Hattori, T. Miyase, A. Ueno, S. Hara and C. Kageyama (1988). Studies on *Citrus unshiu* Marcov, *Chem. Pharm. Bull.* **36**, 5004-5008.
- [10] S. De-Marino, C. Festa, F. Zollo and M. Iorizzi (2009). Phenolic glycosides from *Cucumis melo* var. inodorus seeds, *Phytochemistry Lett.* **2**, 130-133.

- [11] X. Chai, Y.F. Su, L.P. Guo, D. Wu, J.F. Zhang, C.L. Si, J.K. Kim and Z.S. Bae (2008). Phenolic constituents from *Conyza sumatrensi, Biochem. Syst. Ecol.* **36**, 216-218.
- [12] A. Zahoor, N. I. Siddiqui, A. Khan, A. U. Ahmed, A. Ahmed, Z. Hassan, S. S. Khan and S. Iqbal (2010). Two new glycosides from *Conyza bonariensis*, *Nat. Prod. Commun.* **7**, 1099-1102.
- [13] S. Handong and Z. Qinshi (2009). A drug for treating cardio-cerebrovascular diseases-phenolic compounds of *Erigeron breviscapus*, *Huaxue Jinzhan*, 21, 77-83.
- [14] O. Emika, K. Satoshi, M. Mitsuko and F. Yasuo (2004). *ent*-Kaurenoic acids from *Mikania hirsutissima* (Compositae), *Phytochemistry*, **65**, 885-890.
- [15] L. Kyun, K. Hyun, R.S. Yong and L.K. Ro (2009). Two new sesquiterpene glucosides from *Gymnaster koraiensis*, *Heterocycles*, **78**, 2827-2835.
- [16] M.G. El-Ghazooly, A.M. El-Lakany, M.I. Abou-Shoer and A.H. Aly (2003). Chemical constituents of *Helichrysum conglobatum* growing in Egypt, *Nat. Prod. Sci.* 9, 213-219.
- [17] N. Yoshimi, W. Tsutomu and N. Tadataka (2001). Studies on the constituents from the aerial part of *Baccharis dracunculifolia* DC, *Chem. Pharm. Bull.* **49**, 1388-1394.
- [18] Y.F. Su, J.S. Liu, D.A. Guo, J. Li, H.Z. Guo and J.H. Zheng (2001). Study on the flavonoids of *Conyza blinii* (Chinese), *Chin. Tradit. Herb. Drugs*, **32**, 496-497.
- [19] Y.J. Zhang, L.Q. Li, P.Q. Yang and H. Zhang (1998). Studies on the chemical constituents of multiradiate fleabane (*Erigeron multiradiatus*), *Chin. Tradit. Herb. Drugs*, **29**, 798-799.
- [20] W. D. Zhang, W. S. Chen, H. Y. Wang, G. J. Yang, D. Y. Kong and H. T. Li (2000). Studies on the flavone glycosides from the extract of. Erigeron breviscapus, *Chin. Tradit. Herb. Drugs*, **31**, 565-568.
- [21] H. Liu, X.L. Yang and H.B. Xu (2002). Chinese Traditional and Herbal Drugs, Chin. Tradit. Herb. Drugs, 33, 566-568.
- [22] A. Cronquist (1943). Bulletin of the Torrey Botanical Club, Vol. 70. No. 6, pp. 629.
- [23] J. G. Wang, Z. F. Zhang, J. Li, H. Jiang, H. C. Peng and H. Zhang (2008). Chemical constituents from *Erigeron multiradiatus* extracted with ethylacetate, *Huaxi Yaoxue Zazhi*, 23, 255-257.
- [24] B. Li, Y. Zhao, Z. Lin, Y. Zhao and H. Sun (1999). Chemical constituents of multiradiate fleabane (*Erigeron multiradiatus*), *Zhongcaoyao*, **30**, 561-566.
- [25] W. Zhang, W. Chen, Y. Wang, W. Liu, D. Kong and H. Li (2000). Studies on flavone constituents of *Erigeron* breviscapus, *Zhongguo Zhongyao Zazhi*, **25**, 536-538.
- [26] Y. Mingming, Z. Daqing, S. Shuai, L. Wanhui, B. Shengnan and W. Haijing (2008). Constituents from the herb of *Erigeron acer*, *Zhongyaocai*, **31**, 1334-1336.
- [27] K. Imai and T. Mayama (1953). Chemical constituents of *Erigeron* species (Compositae). II. *Erigeron annuus*, *Yakugaku Zasshi*, **73**, 131-134.
- [28] Y. Zhang, L. Li, P. Yang and H. Zhang (1998). Chemical constituents of (Erigeron multiradiatus), *Zhongcaoyao*, **29**, 798-800.
- [29] W. Zhang, W. Chen, Y. Wang, W. Liu, D. Kong and H. Li (2001). Two new glycosides from *Erigeron breviscapus* (Vant.) Hand.-Mazz, *Zhongguo Zhongyao Zazhi*, **26**, 689-690.
- [30] H. Huang, W. Bao, F. Yang, Y. Jia and K. Li (2001). A study on chemical constituents of *Erigeron breviscapus*, *Shenyang Yaoke Daxue Xuebao*, **18**, 266-267.
- [31] W. Zhang, W. Chen, Y. Wang, W. Liu, D. Kong and H. Li (2001). Studies on chemical constituents of *Erigeron* breviscapus, *Zhongguo Yaoxue Zazhi*, **36**, 233-235.
- [32] L. Takeyoshi, Y. Yasunori and K. Masao (2002). Chemical constituents of *Erigeron* genus. I. triterpenoids and sterols from *Erigeron sumatrensis* Retz., *Erigeron philadelphicus* L. and *Erigeron annuus* (L.) Pers, *Journal of Tohoku Pharmaceutical University*, **49**, 71-77.
- [33] L. Xin, Z. Qingkang and G. Kun (2004). Chemical constituents of *Erigeron annuus*, *Xibei Zhiwu Xuebao*, **24**, 2096-2099.
- [35] D.H. Kim, S.J. Jung, I.S. Chung, Y.H. Lee, D.K. Kim, S.H. Kim, B.M. Kwon, T.S. Jeong, M.H. Park, N.S. Seoung, and N.I. Baek (2005). Ergosterol peroxide from flowers of Erigeron annuus L. as an anti-atherosclerosis agent, *Arch. Pharm. Res.* 28, 541-545.
- [36] P. Sengupta, M. Sen and S. Das (1985). Chemical investigation of the whole plant of *Erigeron Canadensis*, J. Indian Chem. Soc. **62**, 78-79.
- [37] H. Liu, X. Yang and H. Xu (2002). Advances in studies on *Erigeron breviscapus*, *Zhongcaoyao*, **33**, 566-568.
- [38] W. Zhang, W. Chen, Y. Wang, W. Liu, D. Kong, H. Li and T. B. T. Ha (2001). Isolation and identification of two new compounds from *Erigeron breviscapus*, *Zhongcaoyao*, **32**, 577-579.
- [39] W. Zhang, H. A. Tam, B. Thi, W. Chen, D. Kong, H. Li, Y. Wang and I. Fouraste (2000). Two new glycosides from *Erigeron breviscapus, J. Chin. Pharm. Sci.* 9, 122-124.
- [40] W. D. Zhang, D. Y. Kong, H. T. Li, W.S. Chen and G. J. Yang (2000). Chemical constituents of *Erigeron breviscapus*, *Zhongguo Yiyao Gongye Zazhi*, **31**, 347-348.
- [41] W. D. Zhang, D. Y. Kong, H. T. Li, G. J. Yang and L. P. Qin (1998). Chemical constituents of *Erigeron breviscapus*, *Zhongguo Yiyao Gongye Zazhi*, **29**, 554-555.
- [42] W. D. Zhang, W. Chen, D. Kong, H. Li, Y. Wang and W. Liu, (2000). Study on chemical constituents of *Erigeron* breviscapus, *Zhongguo Yaoxue Zazhi*, **35**, 514-516.

